I Définitions

1) Exposant positif

La lettre n désigne un nombre entier positif.

$$10^{n} = \underbrace{10 \times ... \times 10}_{n \text{ facteurs}} = \underbrace{10...0}_{n \text{ zeros}}$$

10ⁿ se lit « dix puissance n » ou bien « dix exposant n ».

Exemples
$$10^4 = 10 \times 10 \times 10 \times 10 = 10000$$

 $10^6 = 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 1000000$
 $10^1 = 10$ $10^0 = 1$

2) Exposant négatif

La lettre n désigne un entier positif, donc – n est un nombre entier négatif.

$$10^{-n} = \frac{1}{10^n} = 0, \underbrace{0...01}_{\text{n décimales}}$$

Remarque importante $10^{-n} = \frac{1}{10^n}$ signifie que 10^{-n} est l'inverse de 10^n

Exemples
$$10^{-3} = \frac{1}{10^3} = 0,001$$
 $10^{-5} = \frac{1}{10^5} = 0,000001$ $10^{-9} = \frac{1}{10^9} = 0,0000000$

II Ecriture scientifique d'un nombre décimal positif

1) Définition

Tout nombre décimal positif, non nul, peut s'écrire sous la forme $a \times 10^n$, où a est un nombre décimal tel que $1 \le a < 10$ et n un entier relatif.

Remarques

- → Le nombre a ne comporte qu'un seul chiffre, non nul, avant la virgule.
- → Cette écriture est unique.

Exemples
$$125,36 = 1,2536 \times 10^2$$
 et $0,00487 = 4,87 \times 10^{-3}$

2) Propriété

Pour comparer deux nombres donnés en écritures scientifiques, on compare les exposants.

Exemple

Comparons $8,95 \times 10^5$ et $1,23 \times 10^8$. Le plus grand est $1,23 \times 10^8$.

III Opérations sur les puissances de dix.

Les lettres : a et b désignent des nombres entiers relatifs.

1) Pour multiplier deux puissances de 10, on ajoute les exposants.

$$10^a \times 10^b = 10^{a+b}$$

Exemples:
$$10^2 \times 10^3 = 10^5$$
 $10^{-4} \times 10^7 = 10^{-4+7} = 10^3$ $10^{-8} \times 10^{-15} = 10^{-8+(-15)} = 10^{-23}$

2) Pour diviser deux puissances de 10, on soustrait les exposants.

$$\frac{10^a}{10^b} = 10^{a-b}$$

Exemples:
$$\frac{10^9}{10^{4}} = 10^{9-4} = 10^5$$
 $\frac{10^3}{10^{11}} = 10^{3-11} = 10^{-8}$ $\frac{10^5}{10^{-7}} = 10^{5-(-7)} = 10^{5+7} = 10^{12}$ $\frac{10^{-9}}{10^{-15}} = 10^{-9-(-15)} = 10^{-9+(+15)} = 10^6$

3) Pour calculer la puissance d'une puissance de 10, on multiplie les exposants.

$$(10^a)^b = 10^{a \times b}$$

Exemples:

$$(10^2)^4 = 10^8$$
 $(10^{-6})^3 = 10^{-18}$

$$(10^{-5})^{-3} = 10^{15}$$
 car $(-5) \times (-3) = 15$

IV Applications

1) Donner l'écriture scientifique des nombres suivants :

$$458,56 = 4,5856 \times 10^2$$

$$0.569 = 5.69 \times 10^{-1}$$

$$785,21 \times 10^{24} = 7,8521 \times 10^2 \times 10^{24} = 7,8521 \times 10^{26}$$

$$\frac{7 \times 10^3 \times 5 \times 10^8}{14 \times (10^{-2})^4} = \frac{7 \times 5 \times 10^{11}}{14 \times 10^{-8}} = \frac{5}{2} \times \frac{10^{11}}{10^{-8}} = 2,5 \times 10^{11 - (-8)} = 2,5 \times 10^{19}$$

2) Comparer les nombres suivants :

$$0.2 \times 10^{-5}$$
 ; 50×10^{-9} ; 1750×10^{-10} et 0.07×10^{-6}

Pour cela on donne l'écriture scientifique de ces nombres.

$$0.2 \times 10^{-5} = 2 \times 10^{-1} \times 10^{-5} = 2 \times 10^{-6}$$

$$50 \times 10^{-9} = 5 \times 10^{1} \times 10^{-9} = 5 \times 10^{-8}$$

$$1750 \times 10^{-10} = 1,75 \times 10^{3} \times 10^{-10} = 1,75 \times 10^{-7}$$

$$0.07 \times 10^{-6} = 7 \times 10^{-2} \times 10^{-6} = 7 \times 10^{-8}$$

$$5 \times 10^{-8} < 7 \times 10^{-8} < 1,75 \times 10^{-7} < 2 \times 10^{-6}$$